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Abstract

This paper examines the thermodynamic restrictions imposed by the second law of thermodynamics upon
the relaxation functions in the linear theory of viscoelastic materials with voids[ On this basis the existence
of a maximal free energy is proved by means of a constructive method[ Further\ we use such a maximal free
energy in order to establish a principle of Saint!Venant type in the dynamics of viscoelastic materials with
voids[ A uniqueness theorem is proved for _nite and in_nite bodies and we note that it is free of any kind
of a priori assumptions concerning the orders of growth of solutions at in_nity[ Þ 0888 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

Theories of materials with fading memory have been developed to a great extent in the last three
decades[ In this connection we have to mention the books by Day "0861#\ Truesdell "0873# and
Fabrizio and Morro "0881#[ Only recently Fabrizio et al[ "0883\ 0884# have given an explicit
expression for the maximal Helmholtz free energy under the assumption that the constitutive
equation of linear viscoelasticity obeys the requirements followed by the second law of ther!
modynamics[

The viscoelastic behaviour of porous solids in which the skeletal or matrix material is viscoelastic
and the interstices are void of material has been studied by Cowin "0874#[ The linear theory of
integral type for viscoelastic materials with voids was studied by Ciarletta and Scalia "0880#
and some uniqueness and continuous dependence results were established[ Some reciprocal and
variational theorems were also established by Ciarletta "0878#[

� Corresponding author[
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In the present paper we consider the approach proposed by Ciarletta and Scalia "0880# for
describing the viscoelastic behaviour of materials with voids[ Consistent with the model of vis!
coelastic solid with voids\ we restate the second law of thermodynamics through the work inequality
and then\ in the lines described by Fabrizio and Morro "0881#\ we derive the thermodynamic
restrictions on the relaxation functions from the constitutive functionals by means of time!har!
monic vibrations[ Further\ we use the results of Fabrizio et al[ "0883\ 0884# in order to establish
the existence of a maximal free energy[ Moreover\ via a constructive method\ we establish the
existence of a free energy which proves to be the minimal free energy over the full history space[

On this basis we establish Saint!Venant type principle valid for the dynamic viscoelastic behav!
iour of materials with voids[ In fact\ we suppose that the viscoelastic solid with voids is subjected
on the time interval ð9\ T Ł to initial\ body and boundary data having a bounded support D
T[ Then
a complete description is given upon what happens outside of the support region D
T[ More
precisely\ we prove that\ for each t $ ð9\ T Ł\ there exists a bounded region Dct w D
T\ so that the
whole activity vanishes outside of Dct^ while into the region Dct:D
T\ an appropriate measure of the
dynamic viscoelastic process decays spatially with the distance r from the bounded support D
T\
the decay rate being controlled by the factor "0−r:ct#\ c � const\ c × 9[ As an immediate conse!
quence of the Saint!Venant|s principle\ we get a uniqueness theorem valid for _nite or in_nite
bodies and which is free of any kind of a priori assumptions concerning the behaviour of solutions
at in_nity[

1[ Basic equations[ Some preliminaries

Throughout this paper we denote R\ R¦ and R¦¦\ the reals\ positive reals and strictly positive
reals\ respectively[ Let E2 denote a real euclidean three!dimensional point space and let V be the
three!dimensional vector space associated with E2[

We consider a body that at time t � 9 occupies the bounded or unbounded regular region B of
euclidean three!dimensional space E2 and assume that its boundary 1B is a piecewise smooth
surface[ We refer the motion of the body to a _xed system of rectangular Cartesian axes Oxi

"i � 0\ 1\ 2#[ Let n be the outward unit normal of 1B[ We shall employ the usual summation and
di}erentiation conventions] Latin subscripts "unless otherwise speci_ed# are understood to range
over the integers "0\ 1\ 2#^ summation over repeated subscripts is implied and Latin subscripts
preceded by a comma denote partial di}erential with respect to the corresponding Cartesian
coordinate[ Moreover\ we use a superposed dot to denote partial di}erentiation with respect to
time[

In this paper we consider the linear theory of anisotropic and inhomogeneous viscoelastic
materials with voids[ The equations of motion for materials with voids as described by Cowin and
Nunziato "0872#\ Nunziato and Cowin "0868# are

tij\j¦fi � ru�i\

hi\i¦`¦l � rk8� [ "0#

Here tij are the stresses\ fi is the body force per unit volume\ ui is the displacement\ r is the density
in the reference con_guration\ hi is the equilibrated stress\ ` is the intrinsic equilibrated body force\
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l is the extrinsic equilibrated body force\ 8 is the change in volume fraction from the reference
volume fraction and k is the equilibrated inertia[ Throughout in what follows we assume that r

and k are continuous\ bounded and strictly positive _elds on the closure "BÞ# of B[
Assuming that the work done on every closed path starting from the virgin state is invariant

under time reversal and following Day "0860#\ Ciarletta and Scalia "0880# have proposed the
constitutive equations for viscoelastic materials with voids in the following form

tij"x\ t# � g
t

−�

ðGijpq"x\ t−s#e¾pq"x\ s#¦Bij"x\ t−s#8¾ "x\ s#¦Dijq"x\ t−s#x¾ q"x\ s#Ł ds^

`"x\ t# � −g
t

−�

ðBij"x\ t−s#e¾ij"x\ s#¦b"x\ t−s#8¾ "x\ s#¦Di"x\ t−s#x¾ i"x\ s#Ł ds\

hi"x\ t# � g
t

−�

ðDpqi"x\ t−s#e¾pq"x\ s#¦Di"x\ t−s#8¾ "x\ s#¦Aij"x\ t−s#x¾ j"x\ s#Ł ds\ "1#

where

eij 0
0
1
"ui\ j¦uj\i#\ xi 0 8\i\ "2#

and x $ V is the position vector of a point in B[ The relaxation functions Gijpq\ Bij\ Dijp\ Di\ b and
Aij have the following symmetry properties

Gijpq � Gpqij � Gjipq\ Aij � Aji\ Bij � Bji\ Dijp � Djip\ "3#

on BÞ×ð9\ �Ł[ In what follows\ when no confusion may occur\ we suppress the dependence upon
the spatial variable[

We introduce the four!dimensional linear space D3 as the set of all four!dimensional displacement
_eld U of the form

U 0 "ui\ k08#\ k0 � zk\ "4#

and de_ne the inner product in D3 by

U = V 0 uivi¦k8c\ for U � "ui\ k08#\ V � "vi\ k0c# $ D3[ "5#

Accordingly the magnitude of the vector _eld V � "vi\ k0c# $ D3 is given by

=V= 0"V = V#0:1 �"vivi¦kc1#0:1[ "6#

We denote by Ut the history of U $ D3 up to time t\ i[e[\ Ut"s# 0 U"t−s#\ s $ R¦[
Corresponding to U � "ui\ k08# $ D3\ we introduce the state of strain E"U# de_ned by

E"U# 0 "eij"U#\ 8\ k0xi"U##\ "7#

where eij"U# and xi"U# are calculated by means of the relation "2#[ Further\ we denote by E the
linear space of all objects of the form "7# and de_ne the magnitude of E $ E by

=E= 0"E = E#0:1 0"eijeij¦81¦kxixi#0:1[ "8#

For E $ E we denote by Et the history up to time t\ i[e[\ Et"s# 0 E"t−s#\ s $ R¦[ Given a history
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Et] R¦ : E\ we denote by rE
t the past history which is obtained by restriction of Et to R¦¦[ We

denote by F the set of admissible histories for the system under consideration and let Fr be the set
of past histories obtained by restriction of the histories of F to R¦¦[

Further\ for given Et $ F\ we de_ne T"Et# as follows

T"Et# 0 6tij"Et#\ `"Et#\
0
k0

hi"Et#7\ "09#

where tij"Et#\ `"Et# and hi"Et# are calculated by means of the relation "1#[ According to "7# and "8#\
the magnitude of T"Et# � "tij"Et#\ `"Et#\ k0ð"0:k#hi"Et#Ł# $ E is given by

=T"Et# = � $tij"Et#tij"Et#¦`"Et#1¦
0
k

hi"Et#hi"Et#%
0:1

[ "00#

We note that\ by an appropriate integration by parts\ it is possible to write the constitutive eqns
"1# in the form

tij"Et# � Gijpq"9#epq"t#¦Bij"9#8"t#¦Dijq"9#xq"t#

¦g
�

9

ðGþijpq"s#epq"t−s#¦Bþij"s#8"t−s#¦Dþijq"s#xq"t−s#Ł ds\

`"Et# � −Bij"9#eij"t#−b"9#8"t#−Di"9#xi"t#

−g
�

9

ðBþij"s#eij"t−s#¦b¾ "s#8"t−s#¦Dþi"s#xi"t−s#Ł ds\

hi"Et# � Dpqi"9#epq"t#¦Di"9#8"t#¦Aij"9#xj"t#

¦g
�

9

ðDþpqi"s#epq"t−s#¦Dþi"s#8"t−s#¦Aþij"s#xj"t−s#Ł ds[ "01#

For later convenience\ we introduce the following bilinear functional

FðG"s#^ E"0#\ E"1#Ł 0 0
1
"Gijpq"s#e"0#

ij e"1#
pq ¦b"s#8"0#8"1#¦Aij"s#x"0#

i x"1#
j

¦Dijp"s#"e"0#
ij x"1#

p ¦e"1#
ij x"0#

p #¦Bij"s#"8"0#e"1#
ij ¦8"1#e"0#

ij #

¦Di"s#"8"0#x"1#
i ¦8"1#x"0#

i ##\ [E"0#\ E"1# $ E\ "02#

where G"s# 0 "Gijpq"s#\ b"s#\ Aij"s#\ Dijp"s#\ Bij"s#\ Di"s##[ Obviously\ the symmetry relation "3#
implies that we have

FðG"s#^ E"0#\ E"1#Ł � FðG"s#^ E"1#\ E"0#Ł [E"0#\ E"1# $ E[ "03#

Further\ we de_ne the following quadratic form

W"G"s#^ E# 0 FðG"s#^ E\ EŁ [E 0 E\ "04#

that is\
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W"G"s#^ E# � 0
1
Gijpq"s#eijepq¦

0
1
b"s#81¦0

1
Aij"s#xixj

¦Dijp"s#eijxp¦Bij"s#eij8¦Di"s#xi8\ [E $ E[ "05#

Finally\ we recall some results on the Fourier transform as described\ for example\ by Baggett
and Fulks "0868#[ For any function f $ L1"R# we denote by f "F# the Fourier transform

f "F# "v# 0 g
�

−�

f"j# exp"−ivj# dj[ "06#

Functions de_ned on R¦ are identi_ed with functions on R which vanish identically on "−�\ 9#[
For such functions\ f "F# � f "c#−if "s#\ where f "s# and f "c# are the Fourier sine and cosine transforms

f "s# "v# 0 g
�

9

f"j# sin vj dj\ f "c# "v# 0 g
�

9

f"j# cos vj dj[ "07#

The Plancherel|s theorem for the Fourier transform gives

g
�

−�

f"j#`"j# dj �
0
1p g

�

−�

f "F# "v#`"F#�"v# dv\ [f\ ` $ L1"R#\ "08#

where ( signi_es complex conjugate[
The Fourier inversion formula gives

f"j# �
1
p g

�

9

sin vjf "s# "v# dv[ "19#

2[ Thermodynamic restrictions for linear viscoelastic solids with voids

In this section we derive the thermodynamic restrictions imposed by the second law of ther!
modynamics on the constitutive functionals given by "01#[ In this aim we restate the second law of
thermodynamics through the work inequality that within our context reads as

g
d

9

ðtij"Et#e¾ij"t#−`"Et#8¾ "t#¦hi"Et#x¾ i"t#Ł dt − 9 "10#

holds for any cycle on ð9\ dŁ and that equality holds if and only if Et is a constant history E$ "cf[
Fabrizio and Morro\ 0881#[ If we substitute the constitutive eqns "01# in "10#\ we get\ with "02#\
that

g
d

9

FðG"9#^ Eþ"t#\ E"t#Ł dt¦g
d

9

dt g
�

9

FðGþ "s#^ Eþ"t#\ Et"s#Ł ds − 9[ "11#

As it is well!known "see Fabrizio and Morro\ 0881#\ the time!harmonic vibrations prove to be
especially suited to the derivation of thermodynamic restrictions on the relaxation functions in
viscoelasticity[ Accordingly we consider oscillatory strain evolutions of the form
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E"t# � E"0# cos vt¦E"1# sin vt\ v $ R¦¦\ [E"0#\ E"1# $ E[ "12#

Substitution into the inequality "11# with d � 1p:v\ gives

FðG"9#^ E"0#\ E"1#Ł−FðG"9#^ E"1#\ E"0#Ł¦FðGþ "c# "v#^ E"0#\ E"1#Ł

−FðGþ "c# "v#^ E"1#\ E"0#Ł¦FðGþ "s# "v#^ E"0#\ E"0#Ł

¦FðGþ "s# "v#^ E"1#\ E"1#Ł ¾ 9\ [E"0#\ E"1# $ E\ [v $ R¦¦\ "13#

where Gþ "c# and Gþ "s# are the Fourier sine and cosine transforms of Gþ[ If we set v : � in "13#\ by
RiemannÐLebesgue|s lemma\ we get

FðG"9#^ E "0#\ E"1#Ł � FðG"9#^ E"1#\ E"0#Ł\ [E"0#\ E"1# $ E[ "14#

Now\ if we set v : 9 in "13# and then we use "14#\ we get

FðG"�#^ E"0#\ E"1#Ł � FðG"�#^ E"1#\ E"0#Ł\ [E"0#\ E"1# $ E[ "15#

Obviously\ the thermodynamic restrictions described by the relations "14# and "15# are in full
accord with our assumptions concerning the symmetry of the relaxation functions presented in
"3#[

Further\ by setting E"0# � E"1# � E in "13#\ we deduce that

FðGþ "s# "v#^ E\ EŁ ¾ 9\ [E $ E\ [v $ R¦\ "16#

the equality sign holds if and only if the history of E is constant di}erent from zero\ that is\ we
have v � 9[ Thus\ by means of the relations "04#\ from "16# we have

W"Gþ "s# "v#^ E# ³ 9\ [v $ R¦¦\ [E $ E:"9# "17#

while Gþ "s#"9# � 9[
By using the Fourier inversion formula "19#\ we have

Gþ "j# �
1
p g

�

9

sin vjGþ "s# "v# dv\ "18#

from which\ by an integration with respect to j\ we get

G"j#−G"9# �
1
p g

�

9

0−cos vj

v
Gþ "s# "v# dv[ "29#

If we use "29# in "17#\ we deduce

W"G"9#−G"j#^ E# × 9\ [E $ E:"9#[ "20#

Now\ we set j : � in "20#\ in order to deduce that

W"G"9#−G"�#^ E# − 9\ [E $ E[ "21#

Further\ we note that "29# gives
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G"�#−G"9# �
1
p g

�

9

0
v

Gþ "s# "v# dv\ "22#

and hence

G"j#−G"�# � −
1
p g

�

9

cos vj

v
Gþ "s# "v# dv[ "23#

Finally\ we note that\ by means of the relations "01#\ "08# and "22# we can write

tij"Et# � Gijpq"�#epq"t#¦Bij"�#8"t#¦Dijq"�#xq"t#

¦
1
p g

�

9 6Gþ "s#
ijpq"v# $et"s#

pq "v#−
0
v

epq"t#%¦Bþ"s#
ij "v# $8t"s# "v#−

0
v

8"t#%
¦Dþ "s#

ijq"v# $xt"s#
q "v#−

0
v

xq"t#%7 dv\

`"Et# � −Bij"�#eij"t#−b"�#8"t#−Di"�#xi"t#

−
1
p g

�

9 6Bþ"s#
ij "v# $et"s#

ij "v#−
0
v

eij"t#%¦b¾ "s# "v# $8t"s# "v#−
0
v

8"t#%
¦Dþ "s#

i "v# $xt"s#
i "v#−

0
v

xi"t#%7 dv\

hi"Et# � Dpqi"�#epq"t#¦Di"�#8"t#¦Aij"�#xj"t#

¦
1
p g

�

9 6Dþ "s#
pqi"v# $et"s#

pq "v#−
0
v

epq"t#%¦Dþ "s#
i "v# $8t"s# "v#−

0
v

8"t#%
¦Aþ "s#

ij "v# $xt"s#
j "v#−

0
v

xj"t#%7 dv[ "24#

Throughout the remainder of this paper we assume that the relaxation function G"s# satis_es
the thermodynamic restrictions described by the relations "14#\ "15#\ "17# and "21#[ Furthermore\
we complete the above thermodynamic restrictions by assuming that G"s# satis_es the symmetry
relation "3# and that it is continuous and bounded on BÞ for each s $ ð9\ �#[ Moreover\ we assume
that the quadratic form W"G"�#^ E# is positive de_nite[ As a consequence "see also Mehrabadi et
al[ "0882#\ for the problem of lower and upper bounds for the elastic strain energy#\ it follows that
there exists the positive constant mM × 9 so that

1W"G"�#^ E# ¾ mM =E=1\ [E $ E[ "25#

Further\ the thermodynamic restriction described by the relation "21# implies that the quadratic
form W"G"9#−G"�#^ E# is positive and\ therefore\ by a similar argument as before\ it follows
that there exists the positive constant nM × 9 so that
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1W"G"9#−G"�#^ E# ¾ nM =E=1\ [E $ E[ "26#

Finally\ we note that by means of the CauchyÐSchwarz inequality\ from the relations "02# and
"04# and the positiveness of W"G"�#^ E#\ we have

1FðG"�#^ E"0#\ E"1#Ł ¾ ð1W"G"�#^ E"0##Ł0:1 ð1W"G"�#^ E"1##Ł0:1

¾ m0:1
M =E"1# = ð1W"G"�#^ E"0#Ł0:1\ [E"0#\ E"1# $ E[ "27#

3[ Maximal free energy

According with the lines described by Fabrizio et al[ "0884# for linear viscoelasticity\ here we
will say that a functional c"Eþ"t#\rE

t# on F � E×Fr is a free energy if

"i# c is continuous on E×Fr\ di}erentiable with respect to the _rst argument\ and

tij"Et# �
1c

1eij

"E"t#\rE
t#\

`"Et# � −
1c

18
"E"t#\rE

t#\

hi"Et# �
1c

1xi

"E"t#\rE
t#^ "28#

"ii# for each value of t such that Eþ"t¦t# is continuous\ c satis_es the inequality

c¾ "Et¦t# ¾ tij"Et¦t#e¾ij"t¦t#−`"Et¦t#8¾ "t¦t#¦hi"Et¦t#x¾ i"t¦t#^ "39#

"iii# the functional c is minimal in correspondence with the constant histories in that

c"Et# − c"E$#\ [Et $ F\ "30#

and equality holds if and only if Et is a constant history\ Et � E$[

The maximal free energy cM is a free energy for which we have

c¾ M"Et# � tij"Et#e¾ij"t#−`"Et#8¾ "t#¦hi"Et#x¾ i"t#[ "31#

We note that in the relations "28#\ "39# and "31#\ the functionals for tij"Et#\ `"Et# and hi"Et# are
given by the relation "1# or\ equivalently\ by the relation "24#[

Consider the functional

cM"Et"t#\rE
t# � W"G"�#^ E"t##−

1
p g

�

9 6vW 0Gþ "s# "v#^ $Et"s# "v#−
0
v

E"t#%1
¦vW"Gþ "s# "v#^ Et"c# "v##7 dv\ ["E"t#\rE

t# $ E×Fr\ "32#

where Et"s# and Et"c# are the Fourier sine and cosine transforms of Et[
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We _rst note that\ in view of the positiveness of W"G"�#^ E"t## and by using the thermodynamic
restriction "17#\ it follows that the functional cM given by the relation "32# de_nes a norm on F
and the completion of F relative to this norm is a Banach space HM[

On the other hand\ by using the relation "05#\ we see that the partial derivative of cM with
respect to eij is

1cM

1eij

"Et# � Gijpq"�#epq"t#¦Dijp"�#xp"t#¦Bij"�#8"t#

¦
1
p g

�

9 6Gþ "s#
ijpq"v# $et"s#

pq "v#−
0
v

epq"t#%¦Dþ "s#
ijp"v# $xt"s#

p "v#−
0
v

xp"t#%
¦Bþ"s#

ij "v# $8t"s# "v#−
0
v

8"t#%7 dv\ "33#

that is\ by means of the relation "24#0\ it follows that the relation "28#0 holds true[ By a similar
procedure are obtained the other two relations in "28#[

Further\ by di}erentiating with respect to time\ we have

c¾ M"Et# � 1FðG"�#^ E"t#\ Eþ"t#Ł

−
3
p g

�

9 6vF$Gþ "s# "v#^ 0Et"s# "v#−
0
v

E"t#1\ 0Eþt"s# "v#−
0
v

Eþ"t#1%
¦vFðGþ "s# "v#^ Et"c# "v#\ Eþt"c# "v#Ł7 dv[ "34#

If we use the relation "07# and an appropriate integration by parts\ we get

Eþt"s# "v# � vEt"c# "v#\ Eþt"c# "v# � E"t#−vEt"s# "v#\ "35#

so that the relation "34# becomes

c¾ M"Et# � 1FðG"�#^ E"t#\ Eþ"t#Ł¦
3
p g

�

9

F $Gþ "s# "v#^ 0Et"s# "v#−
0
v

E"t#1\ Eþ"t#% dv[ "36#

According to notation given in the relation "02# and by using the constitutive equations in the
form "24#\ we may conclude from "36# that the relation "31# holds true[

Finally\ for constant histories E$"s# � E"t#\ by "07# we have that

vE$"s# "v# � E"t#\ vE$"c# "v# � 9\ "37#

and so\ from "32#\ we have

cM"E$# � W"G"�#^ E"t##[ "38#

Since the integral in "32# is a positive de_nite quadratic functional\ from the relations "32# and
"38#\ we deduce that the relation "30# holds true and\ therefore\ the functional cM as de_ned by
"32# is a maximal free energy[
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In what follows we use the expression "32# for the maximal free energy in order to get an estimate
for the magnitude of the stress tensor and the equilibrated stress[ In this aim we note that the
relations "00#\ "02# and "24#\ give

=T"Et# =1 � 1FðG"�#^ E"t#\ T�"Et#Ł¦
3
p g

�

9

F $Gþ "s# "v#^ 0Et"s# "v#−
0
v

E"t#1\ T�"Et#% dv\

"49#

where T�"Et# � "tij"Et#\ −`"Et#\ k0ð"0:k#hi"Et#Ł# $ E[
On the basis of the CauchyÐSchwarz inequality and by using the relations "04#\ "17#\ "22#\ "25#Ð

"27#\ from "49# we deduce

=T"Et# =1 ¾ ð1W"G"�#^ T�"Et#Ł0:1 ð1W"G"�#^ E"t##Ł0:1

¦$−
3
p g

�

9

vW 0Gþ "s# "v#^ 0Et"s# "v#−
0
v

E"t#11 dv%
0:1

= $−
3
p g

�

9

0
v

W"Gþ "s# "v#^ T�"Et## dv%
0:1

¾ m0:1
M =T"Et# = ð1W"G"�#^ E"t##Ł0:1

¦n0:1
M =T"Et# = $−

3
p g

�

9

vW0"Gþ "s# "v#^ 0Et"s# "v#−
0
v

E"t#11 dv%
0:1

[ "40#

Thus\ from "32# and "40#\ we deduce

=T"Et# =1 ¾ 1c9cM"Et#\ [Et $ F\ "41#

where

c9 � 1 max "mM\ nM#[ "42#

Finally\ we remark that\ from the relations "00# and "41#\ we have

$tij"Et#tij"Et#¦
0
k

hi"Et#hi"Et#%¾ 1c9cM"Et#\ [Et $ F[ "43#

4[ Saint!Venant|s principle

In this section we consider a motion of a solid with voids described by the displacement U $ D3

and generated by the action of the body force fi and the extrinsic equilibrated body force l and by
the initial and boundary data[ The components of the surface traction ti and equilibrated surface
traction h at regular points of 1B are de_ned by

ti � tijnj\ h � hini\ "44#

respectively[
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In what follows we consider a prescribed time interval ð9\T Ł and denote by D
T the set of all
points of BÞ such that]

"i# if x $ B\ then

ui"x\ t# � 9 or u¾i"x\ t# � 9 or 8"x\ t# � 9 or 8¾ "x\ t# � 9 for some t $"−�\ 9Ł\ "45#

or

fi"x\ t# � 9 or l"x\ t# � 9 for some t $ ð9\ T Ł^ "46#

"ii# if x $ 1B\ then

ti"x\ t#u¾i"x\ t# � 9 or h"x\ t#8¾ "x\ t# � 9 for some t $ ð9\ T Ł[ "47#

We note that the set D
T represents the support of the body force and of the extrinsic equilibrated
body force and of the initial and boundary data[ Throughout this section we assume that D
T is a
bounded region[

Further\ we consider a non!empty bounded regular region D
�T which is such that D
T W
D
�T W BÞ[ We note that if the support of data is non!empty then we choose D
�T to be the smallest
regular region in BÞ which includes D
T^ in particular\ D
�T is chosen to be D
T if D
T also happens to
be a regular region[ If D
T � / then D
�T may be chosen in an arbitrary manner[

We de_ne the set Dr by

Dr 0 "x $ BÞ] D
�T + S"x\ r# � /# "48#

where S"x\ r# is the open ball with radius r and the center at x[ We denote by Sr the portion of the
boundary of Dr which is contained in the inside of B[ We also introduce the notation Br 0 B:Dr[

By using the results described by Chirita� and Quintanilla "0885# and Chirita� et al[ "0885#\ in this
section we establish a Saint!Venant|s principle valid for viscoelastic materials with voids[ Pro!
ceeding to make this we _rst observe that\ as a consequence of the above assumptions\ Sr is a
closed regular surface[ Thus\ associated with U $ D3\ we can introduce the following auxiliary
function

I"r\ t# 0 −g
t

9 gSr

ðti"U#u¾i¦h"U#8¾ Ł dA ds\ r − 9\ 9 ¾ t ¾ T\ "59#

where ti"U# and h"U# are de_ned by the relation "44#[
By using the relations "45#Ð"47# describing the de_nition of D
T\ from the relations "44# and "59#

and by means of the divergence theorem and the relations "0#\ "31# and "32#\ it follows that

I"r\ t#−I"r¼\ t# � −gB"r¼\r# $
0
1

r"u¾iu¾i¦k8¾ 1#¦cM% dV\ 9 ¾ r¼ ¾ r\ 9 ¾ t ¾ T\ "50#

where B"r¼\ r# 0 Br¼:Br[
Further\ we note that the relation "59# implies
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1I
1t

"r\ t# � −gSr

ðtij"U#nju¾i¦hi"U#ni8¾ Ł dA\ "51#

while the relation "50# gives

1I
1r

"r\ t# � −gsr
$
0
1

r"u¾iu¾i¦k8¾ 1#¦cM% dA[ "52#

Using the arithmetic!geometric mean inequality and the relation "43#\ from the relation "51# we
deduce that

b
1I
1r

"r\ t# b¾ c gSr
$
0
1

r"u¾iu¾i¦k8¾ 1#¦cM% dA "53#

where

c �X
c9

r9

\ r9 � inf "r"x#] x $ BÞ#[ "54#

On combining the relations "52# and "53# we arrive at the di}erential inequality

b
1I
1t

"r\ t# b¦c
1I
1r

"r\ t# ¾ 9\ [r − 9\ t $ ð9\ T Ł\ "55#

which is equivalent to the following pair of inequalities

1I
1t

"r\ t#¦c
1I
1r

"r\ t# ¾ 9\ r − 9\ t $ ð9\ T Ł\ "56#

−
1I
1t

"r\ t#¦c
1I
1r

"r\ t# ¾ 9\ r − 9\ t $ ð9\ T Ł[ "57#

Let us suppose that B is a bounded regular region[ Then by using a procedure similar to that
used for obtaining the relation "50#\ we obtain

I"r\ t# � U"r\ t#\ "58#

where

U"r\ t# � gBr
$
0
1

r"u¾iu¾i¦k8¾ 1#¦cM% dV[ "69#

Let us now suppose that B is an unbounded regular region\ that is r $ ð9\ �#[ In this case the
inequality "56# implies

d
dt

"Iðr9¦c"t−t9#\ tŁ# ¾ 9\ [t $ ð9\ T Ł\ "60#

while the relation "57# gives
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d
dt

"Iðr9−c"t−t9#\ tŁ# − 9\ [t $ ð9\ T Ł\ "61#

where "r9\ t9# denotes an appropriate point in the "r\ t#!plane so that r9 − 9 and t9 $ ð9\ T Ł[ If we
choose r9 − 9 so that r9−ct9 − 9\ then\ from the relations "60# and "61#\ we infer

I"r9\ t9# ¾ I"r9−ct9\ 9# � 9\ "62#

and

I"r9\ t9# − I"r9¦ct9\ 9# � 9\ "63#

respectively[ If we make r9 : �\ with r9 − ct9\ from the relations "62# and "63#\ we deduce

lim
r:�

I"r\ t# � 9\ [t $ ð9\ T Ł[ "64#

On letting r : � in "50# and by using the relations "69# and "64#\ we obtain

I"r¼\ t# � gB"r¼\�# $
0
1

r"u¾iu¾i¦k8¾ 1#¦cM% dV � U"r¼\ t#\ "65#

which shows that U"r\ t# is well!de_ned for unbounded regions\ and that the relation "58# remains
valid for the case of an unbounded regular region[

If we substitute the relation "58# in "56#\ we deduce that

1U
1t

"r\ t#¦c
1U
1r

"r\ t# ¾ 9\ r − 9\ t $ ð9\ T Ł\ "66#

which implies

d
dt

ðU"ct\ t#Ł ¾ 9\ [t $ ð9\ T Ł\ "67#

and consequently

U"ct\ t# ¾ U"9\ 9# � 9\ [t $ ð9\ T Ł[ "68#

From the relations "52# and "58#\ we deduce that\ for each _xed t $ ð9\ T Ł\ U"r\ t# is a non!increasing
function of r\ so that

U"r\ t# ¾ U"ct\ t#\ for r − ct\ t $ ð9\ T Ł[ "79#

Thus\ from the relations "68# and "79#\ we deduce that

U"r\ t# � 9 for r − ct\ t $ ð9\ T Ł[ "70#

Let us now consider the case r ¾ ct\ t $ ð9\ T Ł[ We introduce the following measure

U�"r\ t# � g
t

9

U"r\ t# dt\ t $ ð9\ T Ł\ r − 9[ "71#

If we take r0 ¾ ct0\ t0 $ ð9\ T Ł\ then\ from the relations "70# and "71#\ we have
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U�"r0\ t0# � g
t0

r0:c

U"r0\ t# dt\ r0 − 9[ "72#

Further\ we use the changement of variable

t � 00−
r0

ct01 s¦
r0

c
\ "73#

in the integral of the relation "72#\ so that we get

U�"r0\ t0# � 00−
r0

ct01 g
t0

9

U 0r0\ 00−
r0

ct01 s¦
r0

c 1 ds[ "74#

From the relation "73# it results that

s ¾ t\ "75#

and so\ from the relations "58# and "60#\ with r9 � r0 and t9 � t\ it follows that

U"r0\ t# ¾ U"r0¦c"s−t#\ s# � U 0
r0s
t0

\ s1[ "76#

Since U"r\ t# is a non!increasing function of r\ for all _xed t $ ð9\ T Ł\ we infer

U 0
r0s
t0

\ s1¾ U"9\ s#\ s $ ð9\ t0Ł[ "77#

Thus\ from "76# and "77#\ we deduce that

U 0r0\ 00−
r0

ct01 s¦
r0

c 1¾ U"9\ s#\ s $ ð9\ t0Ł\ "78#

and so we obtain from "74# that

U�"r0\ t0# ¾ 00−
r0

ct01U�"9\ t0#\ for r0 ¾ ct0\ t0 $ ð9\ T Ł[ "89#

Summarizing the results "70# and "89#\ we see that we have established the following Saint!Venant|s
principle]

"i# for r − ct\ t $ ð9\ T Ł\

U"r\ t# � 9^ "80#

"ii# for r ¾ ct\ t $ ð9\ T Ł\
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U�"r\ t# ¾ 00−
1
ct1U�"9\ t#[ "81#

5[ Discussion and conclusions

It can be seen that our Saint!Venant|s principle implies an improved result of so!called domain
of in~uence theorem[ In fact\ the relation "80# implies that

ui"x\ t# � 9\ 8"x\ t# � 9\ for r − ct\ [t $ ð9\ T Ł "82#

which implies\ in particular\ that

ui"x\ T# � 9\ 8"x\ T# � 9\ for r − cT\ "83#

a result known as the domain of in~uence theorem "see\ for example\ Gurtin\ 0861^ Carbonaro
and Russo\ 0873#[

We further remark that if B is a bounded regular region\ then for values of T su.ciently large
so as there exists a value of t $ ð9^ T Ł having the property that Dct � B\ the relation "80# becomes
super~uous and the behaviour of solutions is described entirely by the relation "81#[ On the other
hand\ for values of T su.ciently small\ the behaviour of solutions will be described by the relation
"80# almost throughout in B[ Similar arguments are valid for an unbounded regular region[
Concluding\ we can say that our results "80# and "81# in the Saint!Venant|s principle\ are both
pertinent even in the presence of a domain of in~uence theorem discussed in the above[

The Saint!Venant|s principle described by the relations "80# and "81# implies a uniqueness
theorem for the solutions of the initial boundary value problems associated with the model of
viscoelastic materials with voids[ In fact\ if we consider the di}erence between two solutions having
the same body loadings and the same initial and boundary data\ then for the di}erence\ D
T is
empty for each T $"9\ �# and so D
�T can be chosen in an arbitrary manner[ Thus\ U�"9\ t# � 9 and\
therefore\ the relations "80# and "81# imply that the two solutions coincide on
"BÞ:D
�T#×"−�\ �#[ Since D
�T was arbitrarily chosen\ it follows that the two solutions coincide on
BÞ×"−�\ �# and we have a uniqueness theorem[ It is worth remarking that such a uniqueness
result is valid for bounded as well as unbounded regular regions[ It is established without any kind
of arti_cial a priori assumptions on the order of growth of solutions at in_nity[

We conclude this section by summarizing that we have established the Saint!Venant|s principle
described by the relations "80# and "81# and the uniqueness results by using a minimal set of
thermodynamic restrictions imposed by the second law of thermodynamics on the relaxation
functions which appear in the constitutive equations "1#[ Thus\ we have used the mildest restrictions
on the relaxation functions in order to assure that cM\ as given by the relation "32#\ to be a maximal
free energy and so this can de_ne a norm on the space of history HM[ We have to mention that
our analysis presented in the above\ remains valid when cM is substituted by any other free energy
c[ However\ the restrictions on the relaxation functions in order to assure that c is a free energy
are more restrictive[ As in linear viscoelasticity "see Chirita� et al[\ 0885#\ it can be seen that the
Banach space H obtained by the completion of F in the norm induced by the free energy c is
larger than HM because it includes\ for example\ bounded periodic histories which are not in HM[
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